ATLANTA, GA--On November 5, 2014, the Georgia Tech Manufacturing Institute welcomed 45 industry leaders and top manufacturing researchers to convene the first workshop for the Consortium for Accelerated Innovation and Insertion of Advanced Composites (CAIIAC). The goal of the meeting was to introduce the consortium to the invited guests and to gain input on its direction.

The overall vision of the Consortium for Accelerated Innovation and Insertion of Advanced Composites (CAIIAC, pronounced “KAYAK”) is to create an innovative domestic manufacturing ecosystem to significantly shorten the time required in manufacturing development cycles and provide “right-the-first-time material yields” for broad-based composite processes. Guided by this vision, the three-fold mission is to: 1) accelerate innovation and assist in speeding up the development and deployment of advanced composites, 2) develop broad-based applications for advanced composites; and 3) encourage “invent here, build here” in the United States to improve U.S. competitiveness and sell advanced composite products globally.

Discussion items at the meeting included:
- Challenges and unmet needs regarding ICME, standardized design, scalability and composite repairs
- The vision, goals, mission and deliverables of CAIIAC
- Georgia Tech’s approach to industry partnerships
- Next steps for CAIIAC

The next workshop will be held in January in Washington, D.C.

###
Section 1: Overall Project Objectives

The overall vision of the Consortium for Accelerated Innovation and Insertion of Advanced Composites (CAIIAC, pronounced “KAYAK”) is to create an innovative domestic manufacturing ecosystem to significantly shorten the time required in manufacturing development cycles and provide “right-the-first-time material yields” for broad-based composite processes. Guided by this vision, the CAIIAC planning committee developed a three-fold mission to: 1) accelerate innovation and assist in speeding up the development and deployment of advanced composites, 2) develop broad-based applications for advanced composites; and 3) encourage “invent here, build here” in the United States to improve U.S. competitiveness and sell advanced composite products globally.

In preparing the CAIIAC Planning Grant proposal, the team collected a large amount of data from representatives of nearly 40 organizations (see Appendix 1). They also identified technical challenges including: 1) scalable and reproducible out-of-autoclave processes and affordable tooling; 2) structural health monitoring of life cycle performance; 3) inclusion of nanomaterials for improved performance; 4) quick and reliable repairs; 5) standardized composite design and testing for faster and more affordable certifications; and 6) recycling and reuse of composites.

Section 2: Progress and Project Milestones

The CAIIAC team has been working on five major initiatives: 1) interviewing subject matter experts by phone or in person; 2) creating a set of promotional materials; 3) interviewing candidates for a program manager position; 4) organizing an informational session at CAMX Conference in Orlando, FL, on October 14, 2014; and 5) organizing an interactive workshop at Georgia Tech on November 5, 2014, to continue the CAIIAC roadmapping effort.

2.1 Interviewing subject matter experts
The CAIIAC team has interviewed several subject matter experts by phone, including Cedric Xia of Ford Motor Company, Doug Ward of GE Aviation, and John Russell of the Air Force Research Lab. The CAIIAC team is scheduling telephone interviews with additional experts in industry and government, including Tia Benson Tolle of Boeing, Joey Zhu of GE Wind, and Brian Rice of the University of Dayton Research Institute. The intent of the expert interviews was to set a priority for the six major technical challenges identified in the CAIIAC Planning
Grant proposal.

2.2 Creating a set of promotional materials
The CIIAIC team has created a one-page flyer and brochure (see Appendix 2), an information website (http://www.manufacturing.gatech.edu/caiiac-0) and a database of people and organizations interested in CIIAIC efforts.

2.3 Interviewing candidates for a program manager position
A job description has been developed and submitted to Georgia Tech Human Resources for posting. Informally, the CIIAIC team has interviewed one candidate who has a master’s degree in polymer, a closely allied discipline with advanced composites. She has years of experience working in the chemical industry with additional experience with business development. Once the position is posted, we fully expect that many more candidates will apply.

2.4 Organizing an informational session at CAMX Conference in Orlando, FL, October 14, 2014
An informational session was conducted on October 14, 2014, at CAMX Conference. Presentation slides are shown in Appendix 3. The CAMX Conference is organized by the American Composite Manufacturers Association (ACMA), and the Society for Advancement of Materials and Process Engineering (SAMPE). It is arguably the largest composites event in the U.S.

2.5 Organizing an interactive workshop at Georgia Tech, Atlanta GA, November 5, 2014
A one-day workshop has been planned. See the preliminary agenda in Appendix 4.

Section 3: Summary of Project Changes

There have been a few changes with respect to prioritizing some events. The original Gantt chart and the revised one are shown below. The essence of these changes is that, according to industry and government representatives the CIIAIC team interviewed and consulted, the format of the consortium should be included in the final roadmap. In their opinion, it should not be decided at the very beginning of the Planning Grant performance period. In other words, the roadmap shall include technical & business challenges, gaps, path forward and a recommendation of the format of an industry-led consortium. (See Figure 1 and Figure 2 on the next page.)

Section 4: Problems or Organizational Issues

None.
<table>
<thead>
<tr>
<th>Month</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Recruit Members (On Going)</td>
</tr>
<tr>
<td>1</td>
<td>Interview Experts</td>
</tr>
<tr>
<td></td>
<td>CAMX Information Session (October 14, 2014)</td>
</tr>
<tr>
<td></td>
<td>Scan Existing Technical Papers</td>
</tr>
<tr>
<td></td>
<td>Scan Existing Patents</td>
</tr>
<tr>
<td></td>
<td>Scan Existing Roadmaps</td>
</tr>
<tr>
<td>2</td>
<td>Establish IP Policy</td>
</tr>
<tr>
<td>3</td>
<td>BoD Meetings, Meetings with Other Trade and Technical Associations</td>
</tr>
<tr>
<td>4</td>
<td>Scan Existing Technical Papers</td>
</tr>
<tr>
<td>5</td>
<td>Scan Existing Patents</td>
</tr>
<tr>
<td>6</td>
<td>Scan Existing Roadmaps</td>
</tr>
<tr>
<td>7</td>
<td>Roadmap Strawman</td>
</tr>
<tr>
<td>8</td>
<td>Roadmap Workshops</td>
</tr>
<tr>
<td>9</td>
<td>Ad Hoc Reviews of Roadmap</td>
</tr>
<tr>
<td>10</td>
<td>Panel Reviews of Roadmap</td>
</tr>
<tr>
<td>11</td>
<td>Roadmap Adopted by BoD</td>
</tr>
<tr>
<td>12</td>
<td>Report Preparation for AMTech Planning Grant</td>
</tr>
<tr>
<td>13</td>
<td>Set up S01[C]3, Office, Hire Staff</td>
</tr>
<tr>
<td>14</td>
<td>Set up Board of Directors (BOD) and Committees</td>
</tr>
<tr>
<td>15</td>
<td>Roadmap Adopted by BoD</td>
</tr>
<tr>
<td>16</td>
<td>Establish IP Policy</td>
</tr>
<tr>
<td>17</td>
<td>BoD Meetings, Meetings with Other Trade and Technical Associations</td>
</tr>
<tr>
<td>18</td>
<td>Report Preparation for AMTech Planning Grant</td>
</tr>
</tbody>
</table>

Figure 1: Original Gantt Chart (in the CAIAC Planning Grant Proposal)

Figure 2: Modified Program Gantt Chart After Consultation with Industry Experts
Appendix I: Letters of Interest from Partners

CAIIAC has received an overwhelming response from different stakeholders of the advanced composites value chain. Through letters of interest, these companies and organizations indicated their willingness to fully participate in the industry-led CAIIAC to develop, update and execute a technology roadmap. They represent a number of sectors including aerospace, automotive, alternative energy and medical devices. These organizations include not only the major composite materials and product development companies, but also manufacturing enterprise innovation organizations such as Georgia Manufacturing Extension Partnership. Among all of the CAIIAC partners, more than 60% are small- or medium-sized enterprises.

Respondents subscribed to the new Consortium model, which is unique in at least three ways:

1) technology maturation – concurrent maturation of TRL, MRL, business cases and an ecosystem to accelerate innovation and insertion, as well as to promote an “invent here; build here” philosophy
2) full value chain engagement – involving small- and medium-sized enterprises that support OEMs in a wide range of sectors including aerospace, automotive, alternative energy and medical devices; and
3) innovative technology – a fully integrated experimental and computational approach to dramatically reduce the “time to full readiness” of novel nano-materials, out-of-autoclave processes, rapid certification and recycling of composites.

The following is a list of stakeholders who have sent letters to the CAIIAC planning committee:

- Acellent Technologies, Inc., Sunnyvale, CA
- Air Force Office of Scientific Research, Arlington, VA
- Altair Engineering, Inc., Troy, MI
- American Chemistry Council, Washington, DC
- American Composites Manufacturers Association, Arlington, VA
- ATK Aerospace Structures, Clearfield, UT
- Autodesk, Inc., Waltham, MA
- Baker Hughes, Houston, TX
- Bell Helicopter Textron Inc., Fort Worth, TX
- BCT GmbH, Dortmund, Germany
- Chasm Technologies, Canton, MA
- CMC, Inc., Jacksonville, FL
- Criterion Composites, Inc., Garden Grove, CA
- Cytec Aerospace Materials, Tempe, AZ
- Generation Orbit Launch Services, Inc., Atlanta, GA
- Genesis Engineering Solutions, Inc., Lanham, MD
- Georgia Aerospace Inc., Atlanta, GA
- Georgia Automotive Manufacturers Association, Alpharetta, GA
- Georgia Center of Innovation for Aerospace, Atlanta, GA
- Georgia Manufacturing Extension Partnership, Atlanta, GA
- Henkel Corporation, Rocky Hill, CT
- Honeycomb Company of America, Sarasota, FL
- MADE, LLC, Chicago, IL
- Manufacturing Extension Partnership of Louisiana, Lafayette, LA
- Middle Georgia State College, Eastman, GA
- Moog Composites Group, Blacksburg, VA
- NASA Langley Research Center, Hampton, VA
- National Composites Center, Kettering, OH
- NRI, Inc., River Beach, FL
- Oak Ridge National Laboratory, Oak Ridge, TN
- Optomec, Inc., Albuquerque, NM
- Ossur hf, Foothill Ranch, CA
- Owen Corning, Granville, OH
- Prosthetic and Orthotic Associates, Orlando, FL
- Raytheon, Tewksbury, MA
- San Diego Composites, San Diego, CA
- SGL Carbon, Charlotte, NC
- Sikorsky Aircraft Corporation, Stratford, CT
- SoftWear Automation, Inc., Atlanta, GA
- Southwest Nanotechnologies, Inc., Norman, OK
- Spirit AeroSystems, Wichita, KS
- Swan Chemical, Inc., Lyndhurst, NJ
- TA Instruments, New Castle, DE
- ThyssenKrupp Elevator Corp., Alpharetta, GA
- United Technologies Research Center, East Harford, CT
In May 2014, the National Institute of Standards and Technology (NIST) awarded a planning grant for creating the Consortium for Accelerated Innovation and Insertion of Advanced Composites (CAIIAC) to:

- Create a executable roadmap for the next 10 years, and stand up a consortium to implement the roadmap for the creation of a domestic, innovative manufacturing ecosystem to accelerate innovation and industry adoption of advanced composite products; and
- Commit to significantly shortening composite development cycles and providing “right-the-first-time material yields” that result from advanced technologies coupled with an improved understanding of business environments. CAIIAC will develop a differentiating and sustainable consortium to add unique value to its members.

The Georgia Tech Manufacturing Institute (GTMI), in collaboration with Advanced Materials Professional Services, Florida State University, and the University of Dayton, is facilitating the creation of the Consortium. Already, 39 companies and government laboratories representing the aerospace, automotive, energy, and medical device sectors have expressed interest in participating in CAIIAC. More than 60 percent of these partners are small or medium-sized enterprises that play a critical role in the U.S. supplier network. Starting with an industry-led roadmap process, the new consortium aims to:

- Accelerate innovation and deployment of advanced composites.
- Develop broad-based applications for advanced composites.
- Improve U.S. competitiveness and sell advanced composite products globally.

If you are interested in collaborating or need more information, contact GTMI Executive Director Dr. Ben Wang at 404-385-2068 or ben.wang@gatech.edu.
Appendix II: Promotional Material - Brochure

In May 2014, the National Institute of Standards and Technology (NIST) awarded the Consortium for Advanced Innovations and Integration of Nanomaterials (CAIINIC), the Georgia Tech Manufacturing Institute (GTM), in collaboration with Advanced Materials Processing Institute, Purdue State University, and the University of Dayton, the Consortium to work on issues that hinder bridging the gap between research and commercialization.

The U.S. composite industry faces several system-wide challenges, including developing:
- Affordability, availability, and reproducibility of composite manufacturing capabilities;
- Methods for quick and reliable repair and maintenance;
- Standardized processes and tools to composite design and testing; and
- More effective means of recycling and reuse.

Roadmapping Process
Starting with an industry-led road mapping process, the new Consortium aims to identify and validate emerging composite technologies that offer benefits across multiple industries. The Consortium will prioritize major technical projects to address these technical gaps and challenges, as well as others to be included in the Consortium's technology road map. In order to effectively facilitate technical projects, the Consortium will incorporate and maximize an “TRL” scheme that will include Technology Readiness Levels (TRL) Manufacturing Readiness Levels (MRL), Business Case Readiness Levels (BCRL), and System Readiness Levels (SRL) across all project teams.

Market Segments
The Consortium will focus research on:
- Ways to make composites lighter in weight while enhancing performance, aubu
- Improving lightweight materials with a focus on custom made orthotics and prosthetics;
- Disruptive manufacturing processes;
- Improved design and testing tools for a better qualification process using new materials in the aerospace market;
- Finding reliable and affordable ways to join composites with other materials, such as metals in the automotive industry;
- New methods and process solutions;
- Composites with multiple functions that allow for higher energy generation efficiency in the energy market.

Why CAIINIC is the Answer
Through an industry-led conceptualization and development process, the CAIINIC roadmap will serve the U.S. industry in resolving the challenges associated with rapid innovation and deployment of advanced composites in the manufacturing process.

The CAIINIC action plan will result in the transfer of low-cost, rapid production cycle composite technologies along the entire value chain from consumable vendors to the fabricator and, ultimately, to the end user (i.e., aerospace, automotive, energy, and medical device).

The CAIINIC team has selected overlapping technical challenges to address that provide value to vendors, fabricators, and end users in all target market segments.

The CAIINIC approach addresses composite technology readiness, manufacturing readiness, business case readiness, and manufacturing acceptance readiness across all target market segments.

Get Involved, Become a Partner
There will be a number of opportunities to learn more about CAIINIC and participate in the process. Workshops, conferences, sessions, and other meetings will be scheduled to check on upcoming events. Go to http://www.manufacturing.gatech.edu/caiinic.

You can also contact Georgia Tech Manufacturing Institute Executive Director Ben Wang at 404-385-2668 or ben.wang@gatech.edu.
Appendix III: CAMX Presentation

These are the slides from an informational session at CAMX Conference in Orlando, FL, October 14, 2014.

CAIIAC: Consortium for Accelerated Innovation and Insertion of Advanced Composites

Dr. Ben Wang & Dr. Chuck Zhang
Georgia Institute of Technology

Dr. Les Kramer
AMPS, LLC

Dr. Charlie Browning
University of Dayton

CAMX Informational Session
October 14, 2014

“KAYAK”

NIST AMTech Planning Grant

Advanced Manufacturing Technology (AMTech) Program will spur consortium-planned, industry-led R&D on long-term, pre-competitive industrial research needs. The program aims to eliminate barriers to advanced manufacturing and to promote domestic development of an underpinning technology infrastructure

Dr. Ben Wang & Dr. Chuck Zhang
Georgia Institute of Technology

Dr. Les Kramer
AMPS, LLC

Dr. Charles Browning
University of Dayton

Dr. Jacylyn Harrison
U.S. Air Force

Dr. Mia Siochi
NASA

Dr. Rob Maskell
Cytec

Dr. Richard Long
Florida State University

Mr. Stan Patterson
POA Orlando

Mr. Tom Carlson
 Sikorsky

Dr. Dave Hartman
Owens Corning

CAIIAC Program Deliverables

Two Outcomes Are Required from Our Planning Grant Effort:

- A complete and ready to implement technology transfer roadmap that clearly shows each composite technology readiness for transfer to key industrial markets and government
- An identifiable consortium organization that is ready to implement the CAIIAC mission
What Is “CAIIAC”?

“CAIIAC” is currently a consortium concept for advanced composites being validated and planned that will result from a technology roadmap exercise to be presented to the National Institute of Standards and Technology.

Evolution of Composite Technologies

- Military Aerospace
 - Development
 - Commercial Aerospace
 - Space Launch
 - Marine Structures
- Automotive
 - Intermodal
 - Off-Highway
- Misc
 - Wind Energy
 - Marine
- Aerospace
 - High Performance Composites
 - Fiber Optics
 - Energy Storage
- Manufacturing
 - Automated Processes
 - Composite
d - Non-Destructive Evaluation (NDE)
Grand Technical Challenges

CAIAC Starter Set Based on Polling Key Leaders:
- Scalable and reproducible out-of-autoclave processes and affordable tooling
- Structural health monitoring of life cycle performance
- Inclusion of nanomaterials for improved performance
- Quick and reliable joining and repairs
- Standardized composite design and testing for faster and more affordable certifications
- Recycling and reuse of composites

Scalable and Repeatable Out-of-Autoclave Processing and Advanced Tooling for Shortened Development and Production Cycles

State-of-the-Art Out-of-Autoclave Processes (Partial List)
- Resin transfer molding (RTM)
- Vacuum assisted resin transfer molding (VARTM)
- SCRIMP
- Trapped rubber molding
- Bladder pressurization

Potential Needs Possibly to be Addressed by CAIAC
- Fast curing resins
- Automation
- Automated preforming processes
- Rapid tooling with additive manufacturing
- High rate process monitoring
- Computational modeling for process design

Out-of-Autoclave Processes - from High Maturity to Being Developed

Mature Technologies
- HP RTM
- VARIM

Entering the Market
- Pick-and-Place for Prepreg Flies
- Automated Preformer
Structural Health Monitoring (SHM) for Lifecycle Composite Evaluation

Current State-of-the-Art
- Inspections and repairs are 27% of aircraft lifecycle cost
- Subsurface damage & delamination detection still in infancy
- Reliable damage detection not yet intrinsic to the structure
- Costs still high

Potential Needs Possibly to Be Addressed by CAIIAC
- Sensors, interconnects, and supporting electronics that survive the manufacturing cycle
- Embedding SHM devices in cost-effective manner
- SHM should have a minimal effect on structural properties
- Distributed testbeds that allow SHM validation

Progress in Structural Health Monitoring

Current Approach ➔ Future Approach

Current Approach: Sensors and Electronics Suite ON Structure
Future Approach: Sensors and Electronics Embedded WITHIN Structure

Additive Nanoscale Materials for Improved Performance

Current State-of-the-Art
- Carbon fiber composites remain essentially a two-dimensional material
- "Z" axes properties remain troublesome leading to impact damage sensitivity and delaminations
- Cross and cross-itching, 3-D weaving, and improvements in resin toughness are partial solutions
- Current composites lack multifunctionality

Potential Needs Possibly to Be Addressed by CAIIAC
- Wide range of nano material additives are beginning to emerge
- Nano materials can be added to resin or attached to fibers
- Significant reductions in inner laminar tracking and matrix toughness are expected
- Scalable nanomanufacturing processes need to be developed and matured
Benefits of the Additive Nano Materials

Current Approach
Carbon Fiber Composite Fracture

Future Approach
Nanotube Coated Carbon Fiber

Smooth Carbon Fiber
- Poor Adhesion

Nanotubes Increase Carbon Fiber Surface Area – Good Adhesion

Quick and Reliable Composite Component Joining and Repairs

Current State-of-the-Art
- Metal fasteners remain the backup of choice for adhesive bonding repairs
- Repair costs remain high for composites
- Direct bonding is currently being considered for several airframes
- Times remain excessive for composite patch repairs

Potential Needs Possibly to Be Addressed by CAIIAC
- Simple repair processes with original structure properties
- Composite patch repair and joining that are 100% NDI capable
- Acceptable composite patch repair cycle times
- Reliable joining techniques between composite and metal components

Evolution of Reliable Adhesive Bond Repair

Current Approach
Redundant Mechanical Fasteners
With Adhesive Bonding in Shop

Future Approach
Repair Patch Adhesive Bonding
Done in Field
Standardized Composite Design and Testing for Faster and More Affordable Certification

Current State-of-the-Art
- Current composite designs are based on large statistical databases (i.e., "A" and "B" allowables)
- Can take up to 15 years for an inadequate mechanical property database
- Testing costs are excessively high
- Limits approved fibers, ply schedules, and resin usage

Potential Needs Possibly to Be Addressed by CAIAC
- Develop a virtual material property (mechanical and other physical properties) verification methodology
- Develop a "verifiable" processing - structure - property models
- This methodology is based on extensive use of computational modeling with a limited amount of experimentation.
- The desired result is a "certification via virtual materials testing" that can be done in a small fraction of the time required by physical testing

Dimensional Variation Control in Composite Design and Manufacturing

- Tight dimension tolerance is critical for large and complex composite structures manufacturing and assembly.
- Effective composite structure dimension variation control can be achieved through "variation reduction by design" using integrated computational materials and manufacturing engineering (ICM2E)

Steps to Standardized Composite Design and Testing

Current Approach

<table>
<thead>
<tr>
<th>Component</th>
<th>Minimum Count</th>
<th>Count (att.)</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing</td>
<td>1-3</td>
<td>100-125</td>
<td>4</td>
</tr>
<tr>
<td>Components</td>
<td>10-30</td>
<td>10-20</td>
<td>3</td>
</tr>
<tr>
<td>Subcomponents</td>
<td>30-50</td>
<td>10-35</td>
<td>3</td>
</tr>
<tr>
<td>Elements</td>
<td>2000-5000</td>
<td>10-25</td>
<td>3</td>
</tr>
<tr>
<td>Coupons</td>
<td>5000-100,000</td>
<td>8-15</td>
<td>2</td>
</tr>
</tbody>
</table>

Future Approach

(Credit: Michael "Mick" Mahor)
Recycling and Reuse of Composites

Current State-of-the-Art
- As the composite industry grows, so will the need to recycle and reuse composite feedstocks
- Thermoset composite materials are relatively difficult to recycle
- Cured thermoset composite resins are chemically stable and difficult to separate from fibers
- Thermoplastic resin composites are easier to recycle because they can be remelted and potentially reused as injection molding feedstock
- Markets are slow to develop for recycling of composites

Potential Needs Possibly to Be Addressed by CAILAC
- Develop methods to obtain high constituent quality recycled feedstock close to virgin material
- Recycling costs must be low
- Infrastructure and new market applications for recycled materials must be identified to potential customers

Implementing Recycling and Reuse of Composites

Current Approach
- Wash Composite Materials
- To the Landfill

Future Approach
- Reclaimed Composite Materials
- Into Useful Structures

The potential business benefits of next generation advanced composites are compelling; however, no single company has the financial resources or the technical depth to make it a reality any time soon.

It takes a community...
Vision

- CAIAC will create a domestic, innovative manufacturing ecosystem to accelerate innovation and industry adoption of advanced composite products.
- CAIAC is committed to significantly shortening composite development cycles and providing “right-the-first-time material yields”.
- CAIAC will enable rapid technology transfer resulting from both advanced technologies coupled with an improved understanding of business environments.

Mission

- Accelerate innovation and assist rapid insertion of advanced composites.
- Develop broad-based applications for advanced composites.
- Encourage “invent here, build here” in the United States to improve U.S. competitiveness and sell advanced composite products globally.

How CAIAC Differs

- **Technology maturation** - concurrent maturation of TRL, MRL, business cases and an ecosystem to accelerate innovation and insertion as well as to ensure that the new technology is “invent here, build here in the US”.
- **Full value chain engagement** - involving small- and medium-sized enterprises that support OEMs in a wide range of sectors.
- **Innovative technology** – a fully integrated experimental and computational approach to dramatically reducing the “time to full readiness” of, e.g., novel nanomaterials, out-of-autoclave processes, rapid certification and recycling of composites.
Product “Tech Transfer” Successfully Occurs Only When Technology and Business Factors Are Ready

Some readiness level metrics are well known – others are not:

- **TRL** from NASA and **MRL** from the DoD
 - Extensive use in aerospace - less in commercial activities
- Business cycle may not be in step with technology
 - Expected funding is slow to come or never does
 - Technology projects die in “The Missing Middle”
 - Markets are slow to develop
- Metric needed for Business Case (BcRL) and Regional Manufacturing Infrastructure Readiness, or Eco-system Readiness (EcRL)

xRL Is a Top Tier Metric that Defines Technology Transition Readiness to Industry

xRL consists of four distinct readiness level metrics to support CAILAC mission:

- **TRL**: used by public-private sector technologists to communicate readiness level for technology use
- **MRL**: used primarily by defense community to assess readiness risk of the industrial base
- **BcRL**: used by Georgia Tech to engage industry and government customers to assess market opportunities, impact and risks of technology/manufacturing maturation and product development
- **EcRL**: used by Georgia Tech and regional manufacturing clusters to identify “build here” capabilities for job and business creation and retention

CAIIAC Technology Maturation Approach

- **Laboratory Research**: Basic research, single & multi-disciplines, Technology pipeline
- **CAIIAC Shared Facilities**: Early stakeholder engagement, Business case orientation, Application pipeline
- **Industrial Transition**: Build Here in U.S., Supply chain readiness, Workforce development, Build Here, sell globally

1. Discover in U.S. & Globally
2. Accelerate Translation
3. Build Here in U.S.
4. CAIIAC Shared Facilities
5. Business case orientation
6. Early stakeholder engagement
7. Application pipeline
8. Build Here in U.S.
9. Supply chain readiness
10. Workforce development
 Build Here, sell globally
Exploratory Investigation Using Meta-Roadmapping

- Meta-Roadmapping involves a combined analysis of existing roadmaps, scientific publications and patents to derive useful information about the emerging technologies. Based on the result of this analysis, a meta-roadmap is developed in conjunction with experts’ opinions.
- This approach differs from traditional roadmapping process in that it can provide an idea about the technology under study from different perspectives in a single meta-roadmap.
Four Phases of Meta-Roadmapping

Phase 1: Roadmaps Analysis
Phase 2: Publications Analysis
Phase 3: Patents Analysis
Phase 4: Triangulation

In Phase 4, results from Phases 1-3 are combined to define a list of emerging technologies to become a starting point for the development of meta-roadmap by subject experts.

CAIIAC Membership Activities

1. Identified Key Potential Partners in the Composites Industry – Many are Here Today
2. Established Database of Potential Partners
 1. Highlights Composite Expertise
 2. Identifies Market Segment Represented
 3. Covers Technologists to Business Specialists
3. Contact via F2F, Phone, Text and/or E-mail
4. Gratis Membership During Planning Grant Duration

1st CAIIAC Workshop
8:30AM – 3:30PM
November 5, 2014
Georgia Tech
Agenda & travel information forthcoming
Governance and Business Challenges

1. Consortium organization model
2. Membership structure
3. Funding sources and long-sustainability
4. Project definition and selection
5. Intellectual property
6. Value proposition

Note: In addition to technical topics, these items Will be Discussed at Our November 5, 2014 Workshop at Georgia Tech

Schedule and Milestones

<table>
<thead>
<tr>
<th>Months</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td></td>
</tr>
<tr>
<td>Event</td>
<td></td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
</tr>
</tbody>
</table>

- Initial Meeting
- Working Group成立
- Technical Notice
- Technical Paper
- Technical Workshop
- Technical Challenge
- First Workshop: GTM (November 5, 2014)
- Panel Review of Skills
- Set up SRO Office, Staff
- Set up Board of Directors (BOD) and Committees
- Workshop designed by BOD
- Kickoff Workshop
- (D) Meetings, Meetings with Other Stakeholders
- Report Preparation for Annual Planning Board
Appendix IV: Agenda for November 5, 2014, CAIIAC workshop

November 5, 2014

Workshop Venue: Georgia Tech Manufacturing Institute
813 Ferst Dr., NW
Atlanta, Georgia 30332

8:30 AM Welcome Ben Wang/GTMI

8:40 AM Introduction of Participants All
 (60 Seconds Self-Introduction
 Each at Podium)

9:10 AM Workshop Agenda Overview Les Kramer/AMPS

9:15 AM Feature Talks on Challenges and Unmet Needs
 • Scalability Ben Wang
 • Standardized Design speaker TBD
 • Composite Repairs speaker TBD
 • ICME Chuck Ward

10:20 AM CAIIAC Vision, Goals, Mission and Deliverables Ben Wang/GTMI

10:45 AM Break

11:00 AM Breakout Sessions - I TBD/GTMI
 • Grand Challenges, Technical Gaps and Readiness - I
 • Grand Challenges, Technical Gaps and Readiness - II
 • Consortium Organization/Governance, Tech Transfer and Shared Facilities
 Note: Three concurrent sessions

11:45 AM Working Lunch

1:00 PM Breakout Sessions - II TBD/GTMI
 • Grand Challenges, Technical Gaps and Readiness - I
 • Grand Challenges, Technical Gaps and Readiness - II
 • Consortium Organization/Governance, Tech Transfer and Shared Facilities
 Note: Three concurrent sessions

1:45 PM Breakout Sessions - III TBD/GTMI
 • Grand Challenges, Technical Gaps and Readiness - I
 • Grand Challenges, Technical Gaps and Readiness - II
 • Consortium Organization/Governance, Tech Transfer and Shared Facilities
 Note: Three concurrent sessions

2:30 PM Breakout Report Back Session Moderators/AMPS

3:15 PM Where Do We Go from Here? Chuck Zhang/GTMI

3:25 PM Adjourn Ben Wang/GTMI

3:30 PM Unstructured Networking Opportunities