Algenol – Technology Overview and Systematic Analysis of Direct to Ethanol®

Ben McCool
2011 NSF CMMI Research and Innovation Conference
January 4, 2011
Algenol Overview

- Algenol is an advanced industrial biotechnology company
 - Headquartered in Bonita Springs, Florida
 - Research labs in Fort Myers, Florida and Berlin, Germany
 - 120 employees and consultants including 60 Ph.D.s
- Algenol is commercializing its patented algae technology platform for ethanol production and green chemistry
 - $25MM DOE grant for Integrated Biorefinery
 - Project passed DOE Gate 1
 - Partnered with Dow Chemical, NREL, Georgia Tech, Membrane Tech & Research, University of Colorado
 - Licensed Direct To Ethanol® technology in Mexico
- New Fort Myers, Florida facility which consolidates Algenol’s existing U.S. lab and outdoor testing facilities
 - Lab operations began in early August 2010
 - 40,000 ft² of biology and engineering lab space
 - 4 acre outdoor Process Development Unit
 - 36 acre outdoor demonstration facility

Direct To Ethanol® technology

\[2 \text{CO}_2 + 3 \text{H}_2\text{O} \rightarrow \text{C}_2\text{H}_5\text{OH} + 3 \text{O}_2 \]
Uses enhanced algae, CO₂ and energy from the sun to produce ethanol

\[2 \text{CO}_2 + 3 \text{H}_2\text{O} \rightarrow \text{C}_2\text{H}_5\text{OH} + 3 \text{O}_2 \]

CO₂ can be sourced from:
- Power Plant
- Refinery or Chem. Plant
- Cement Plant
- Natural Gas Well
- Ambient Air?
Biological Carbon Platform

Blue-green Algae (Cyanobacteria)
- Fast-growing photosynthetic prokaryotes with high rates of photo-conversion of CO_2 into photosynthate and biomass
- Capacity for stable genetic enhancement and availability of molecular tools
- High rates of $\text{CO}_2/\text{HCO}_3^-$ assimilation in marine and freshwater environments
- Defined inorganic growth medium with no organic C sources required
- Amenable for growth in enclosed photobioreactors
- Wide range of growth forms and ecotypes among different genera
 - Over 1500 curated strains from diverse environments available in-house within the Algenol Biofuels Culture Collection (ABCC)
 - Screening program used to identify candidate species for genetic enhancement
 - Candidate species selected on the basis of numerous physiological, morphological and molecular criteria
Enhanced ethanol production via over-expression of genes for fermentation pathway enzymes

- These enzymes, pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH), are found widely in nature.
- PDC catalyzes the non-oxidative decarboxylation of pyruvate to produce acetaldehyde.
- ADH converts acetaldehyde to ethanol.
- Ethanol diffuses from the cell into the culture medium and is collected without the need to destroy the algae.
Laboratory to Photo-bioreactor

- Algenol has the capability to move biology and engineering from the lab scale to the field at one site
- Enhanced algae have been approved for use in Algenol’s Florida facility
Enhanced algae, photobioreactors, and ethanol separation systems are key, proprietary components of the Algenol technology.

- Algenol grows ethanologenic algae in patented photobioreactors (PBRs) which allow for optimum solar transmission and efficient ethanol collection
 - Made of polyethylene with special additives and coatings to optimize performance
 - 4500 liter seawater culture
 - 15m long X 1.5m wide
- Ethanol-freshwater condensate is collected from photobioreactors and concentrated to feedstock-grade or fuel-grade ethanol using a combination of Algenol proprietary and conventional technology.

First step in purification process is accomplished with solar energy and provides a clean, ethanol-freshwater solution.
Engineering Group – Current Initiatives

- **Separations**
 - CO₂ Capture
 - Industrial sources
 - Capture from air
 - CO₂ Delivery
 - Gas and Liquid Phase
 - Coupled to O₂ Management
 - O₂ Management
 - Ethanol Separation
 - Via condensate
 - Via adsorption or membranes

- **System Design and Modeling**
 - Scale Optimization/Economic Analysis/Research Guidance
 - Unit operations
 - Phase equilibria
 - Mixing systems
 - Biomass management/utilization
 - Life Cycle Analysis

Integration of CO₂ capture, delivery to and utilization by algae culture – demonstrated in collaboration with Georgia Tech

Blue-green algae (a) after filter, wash and centrifuge at 4000 rpm (3hrs) and (b) microscope image of india ink tracer experiment
Purification Technology

Vapor liquid equilibrium diagram showing non-ideality of EtOH/H₂O system

- Photo-Bioreactor: 0.5 – 2 wt%
- Vapor Compression: 5 – 20 wt%
- Steam Stripping: 90 – 95 wt%
- Mol Sieve Extract: 99.7% Fuel Grade
Example of Optimizing Scale

- Assuming “commercial module” of a given land area we can look at how scale economies will dictate the design.
- Understanding the optimal # of separation units per commercial module provides an illustrative example of scale optimization in distributed systems.

In this case the optimum is between 1 and 4 units per commercial module.
Simple View of Scaling Approach

- Cost = Separation Unit + Piping Network
- General equipment cost equation:
 Scaling: Cost 2 = Cost 1 x (capacity 2/capacity 1)^m
- Here, capacity = acres/separation unit
 In the current context, m:
 <1 for Separation Unit
 >1 for Piping Network or Distribution Systema,b

Approach needs to further incorporate factors to arrive at Total Installed Cost
The slight negative scaling for piping slowly picks up and starts dominating the cost after a point. The minimum ‘cost/acre’ corresponds to the optimum plant size

System Description for Life Cycle Analysis

[Diagram showing a flowchart for EtOH production, including stages such as seawater intake, water pumping, sterilization, mixing, scrubber, EtOH production, VCSS & VCD, molecular sieve, EtOH separation, and final steps like combustion in vehicle.]
LCA for Evaluating Technology Options

- LCA* developed with Georgia Tech is based on publicly available information and engineering calculations.
- LCA intended to be evergreen – continuously updated as Algenol evaluates new technology options.
- Recent example: Membrane technology evaluated based on membrane data available from open literature (work of Vane and MTR) combined with Algenol’s process simulation and integration concepts.
- Membrane has lower carbon footprint (and OPEX) and initial CAPEX estimates indicate lower cost vs. distillation + mol sieve dehydration.
- Next steps include work on waste biomass disposition in collaboration with NREL.

Carbon Footprint for Gasoline: 91.3 gCO₂/MJ

Diagram:
- VCSS+SS+Membrane
- VCSS+VCD+MS
- VCSS+CD
- VCSS + Conventional Distillation + Mol Sieves
- VCSS + Vapor Compression Distillation + Mol Sieves
- VCSS + Membrane

Graph:
- GHG Emission (gCO₂e/MJ-EtOH)
- Initial Ethanol Concentration (wt%)
Advantages of Integration with Membrane

- Produce fuel-grade ethanol directly on site in small modules
- Lower initial capital expense/faster initial operation of entire plant
- Quicker approach to full commercial maturity
- Reduce piping/pumping cost
- Isolated modules reduce cross-contamination risk
Conclusions

• In order to assess economic viability and environmental impact, the entire system must be analyzed

• Analysis must include:
 • Design and scaling key unit operations and their interplay with distributed systems (Unit Ops + Farming)
 • Techno-economic model – CAPEX (with all necessary factors to estimate total installed cost), OPEX and Cash Flows
 • Life Cycle Analysis – not only provides carbon footprint information but helps in evaluation of technology options

• The work shown here is the result of many different approaches – process simulation, mathematical optimization of piping/distribution networks, cost estimating etc.

• The synthesis of the above steps give a holistic view of the process and the “right sizing” of a commercial facility to maximize return on investment
Engineering Technical Partnerships - Leveraging

<table>
<thead>
<tr>
<th>Key Technical Areas</th>
<th>Level of Effort/Other Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBRs; water treatment; process engineering; mixing systems</td>
<td>Over 20 scientists involved in DOE project and beyond</td>
</tr>
<tr>
<td>Gas management; product separation; process engineering</td>
<td>6 scientists involved in plant design, thermodynamics, techno-economic modeling; know-how in CO₂</td>
</tr>
<tr>
<td>Infrastructure and ethanol distribution</td>
<td>Joint development exploring integration of Algenol process with refinery processes</td>
</tr>
<tr>
<td>Separations, life cycle analysis, CO₂ delivery, biomass disposal</td>
<td>7 professors, 5 postdocs, 3 students</td>
</tr>
<tr>
<td>Membrane separations, integration of the Bio-Sep system with our VCSS</td>
<td>3 scientists, extensive know-how in membrane applications</td>
</tr>
<tr>
<td>Biomass disposition and LCA support; evaluation of industrial CO₂ sources</td>
<td>4 scientists, extensive connections to algae science area</td>
</tr>
</tbody>
</table>
Acknowledgements

- **Algenol Biofuels**
 - Ron Chance
 - Ed Legere
 - Craig Smith
 - John Coleman
 - Paul Woods

- **Dow Chemical Company**
 - Steve Gluck
 - Ray Roach
 - John Pendergast
 - Duncan Coffey

- **MTR**
 - Richard Baker
 - Ivy Huang

- **Linde Group**
 - Hans Kisttenmacher
 - Mathias Mostertz
 - Martin Pottmann
 - Gerhard Lauermann

- **Georgia Tech**
 - Matthew Realff (ChBE)
 - Valerie Thomas (ISyE)
 - Bill Koros (ChBE)
 - Chris Jones (ChBE)
 - Sankar Nair (ChBE)
 - Victor Breedveld (ChBE)
 - Haiying Huang (CEE)

This material is based upon work supported by the Department of Energy under Award Number DE-FOA-0000096.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.