Machining Process Modeling and Simulation: Challenges and Unique Capabilities

Shreyes N. Melkote
Morris M. Bryan, Jr., Professor for Advanced Manufacturing Systems
George W. Woodruff School of Mechanical Engineering

GTMI EAB Meeting, April 16, 2010
Grand Challenge

• To be able to model, simulate, and optimize industrial machining processes without physical experimentation

• Key desirable attributes:
 – Realistic models (3 dimensional)
 – Accurate physics
 – Ability to simulate final part quality
 – Ability to optimize multiple objectives
 – Low computational cost (minutes not hours or days!)
 – Account for sources of uncertainty
Potential Benefits

• Ability to design and optimize complex cutting tool geometries without costly trial-and-error testing.

• Obtain information on parameters that are hard or impossible to measure in-situ, e.g. strain, stress, temperature, forces, microstructure, etc.

• Controlled generation of microstructure and associated mechanical properties, e.g. grain size, crystallographic texture, hardness, etc.

• Enable explicit consideration of manufacturing process effects in computational materials design
Challenges for Different Modeling Approaches

Theoretical Modeling: Many assumptions and boundary/initial conditions

Numerical Modeling: Time consuming, inadequate material models

Empirical Modeling: Segmented observations and limited extendibility

Predictive Modeling

Courtesy: Steven Liang
State-of-the-Art: Numerical Modeling

Temperature

Strain

Cutting Force

Strain Rate

Mises Stress
A Key Challenge: Material Modeling

Material model: \(\sigma = f(\varepsilon, \dot{\varepsilon}, T) \)

SHPB (Split Hopkinson Pressure Bar)

Uniaxial Tensile / Compression Test

Bariani et al. (2001)
Physics-based Material Modeling

Flow Stress

- Strengthening due to Grain Boundaries, σ_G
 \[\sigma_G = \frac{k_G}{\sqrt{D}} \]

- Strengthening due to Dislocation Forests, σ_ρ
 \[\sigma_\rho = \alpha_\rho \mu b \sqrt{\rho} \]

- Strengthening due to Short Range Barriers, σ_{th}
 \[\sigma_{th} = \sigma_0 \left(1 - \left(\frac{kT}{g_0 \mu b^3 \ln \dot{\epsilon}} \right)^{1/q} \right)^{1/p} \]

- Strengthening due to Dislocation Drag, σ_D
 \[\sigma_D = \frac{MB}{\rho_m b^2 \dot{\epsilon}} \]

Dynamic Recrystallization

- Dynamic Recrystallization
 \[D = D_f + (D_0 - D_f) \tanh \left(\frac{\dot{\epsilon}}{\epsilon} \right)^u \]
 \[(\Delta \rho)_{DRX} = K(\dot{\epsilon}, T) \left(\frac{2}{D_0} - \frac{2}{D} \right) \]

Hardening & Dynamic Recovery

- Hardening & Dynamic Recovery
 \[\frac{d\rho}{d\epsilon} = A \sqrt{\rho} - B(\dot{\epsilon}, T) \rho \]
 \[\rho_{H&DRV} = \left[\frac{A}{B} + \left(\sqrt{\rho_0} - \frac{A}{B} \right) e^{-\frac{B \epsilon}{2}} \right]^2 \]

\[\rho = (\Delta \rho)_{DRX} + \rho_{H&DRV} \]

Sponsor: Third Wave Systems, LLC / Department of Energy – IMI, 3-year effort
Sample Validation: OFHC Cu

Experimental data courtesy of C. Saldana (PSU) and S. Chandrasekar (Purdue)

Sample Result: Microstructure Evolution

<table>
<thead>
<tr>
<th>V_c (m/min)</th>
<th>Grain Size</th>
<th>Dislocation Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>265.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OFHC Cu, Rake Angle = 0°

![Georgia Tech Logo](image7)

The George W. Woodruff School of Mechanical Engineering
Hardness Prediction

OFHC Cu
Rake angle: 20°
Cutting speed = 28.2 m/min
Feed = 0.21mm

(Brown et al., 2002)

Experimental data from Elmadagli & Alpas (2003)

OFHC Cu
Rake angle: -5°
Cutting speed = 36 m/min
Feed = 0.25mm

Liu et al., to appear in Procedia CIRP, 2014
Material-Specific Challenges: Ti Alloys

Continuous Chip

Sima & Ozel (2010): Ti-6Al-4V

Segmented Chip

Deng et al. (2012): Copper

Sima & Ozel (2010): Ti-6Al-4V
Limitation of Existing Material Models

Johnson-Cook (J-C) model (1985)

\[
\sigma = \left(A + B\varepsilon^n \right) \left(1 + C\ln\frac{\dot{\varepsilon}}{\dot{\varepsilon}_0} \right) \left[1 - \left(\frac{T - T_r}{T_m - T_r} \right)^m \right]
\]

Zerilli-Armstrong (Z-A) model (1998)

\[
\sigma = \sigma_a + B e^{-\left(\beta_0 - \beta_1 \ln \dot{\varepsilon} \right) T + B_0 \varepsilon^n} e^{-\left(\alpha_0 - \alpha_1 \ln \dot{\varepsilon} \right) T}
\]

Nemat-Nasser (N-N) model (2001)

\[
\tau = r_0^n + r^0 \left\{ \left[-\frac{k}{G_0} \ln \dot{\gamma} - \ln \dot{\gamma}_0 + \ln \left[1 + a_0 \left(1 - \left(\frac{T}{T_m} \right)^2 \right) \right] \right] \right\} \left[1 + a_0 \left(1 - \left(\frac{T}{T_m} \right)^2 \right) \right]
\]

Ti-6Al-4V, Cutting speed: 120m/min; feed: 0.1014mm/rev
Effect of Failure within Shear Band

\[\sigma = \left[\text{constitutive material model} \right] \cdot \left[F + (1 - F) \cdot \tanh \left(\frac{\varepsilon_c}{\varepsilon} \right)^v \right] \]

- **F**: Controls the asymptotic value of flow stress at large strains.
- **\(\varepsilon_r \)**: Controls the critical strain for initiation of shear band.
- **\(v \)**: Controls the rate of material failure.

Sponsor: Third Wave Systems, LLC / NIST TIP, 3 year effort

Xue et al. (2002): Ti64

Liu et al., J. Mat. Proc. Tech., 2013
Ti-6Al-4V Simulation

Plastic Strain:

Temperature:

Note: Zerilli-Armstrong model for Ti-6Al-4V used as the base constitutive model

Modeling IP licensed to Third Wave Systems, LLC
Model Validation: Ti-6Al-4V

Liu et al., J. Mat. Proc. Tech., 2013
Analytical Modeling of Tool Performance
(Prof. Steven Liang)

Tool Life Models

Tool Wear Models

Built-up Edge Models

$T_{mod} = T(1 - 0.09 \ln \dot{\varepsilon})$

$T_{mod} < 550K$ and $T_{mod} = T(1 - 0.09 \ln \dot{\varepsilon})$

Aerosol Generation Models

Cutting Fluid Models

rotational speed 145 (rpm)

flow rate (liter/s)

$\dot{\varepsilon} = 0.09$

$V (m/min)$

$V_B (\mu m)$

$\text{Aerosol generation rate (A}_{\mu l}/m^3s)$

Crater (\mu m)

$\text{Distance from tool tip (mm)}$

66 min
Analytical Modeling of Workpiece Performance
(Prof. Steven Liang)
Unique Aspects of GT’s Program

• Nationally and internationally-recognized core competency in precision machining research: 4* faculty members with complementary expertise in modeling and experiments

• Strong track-record in both basic and applied machining research (since early 1990s); strong industry relationships with repeat “customers”

• Dedicated state-of-the-art laboratory facilities for research in precision machining across multiple length scales; one of the few US university labs in this area

• Strong materials research group available for collaboration e.g. in dynamic characterization of materials

• Synergy with national initiatives in advanced manufacturing and materials e.g. NNMIs in Light Weight Metals, Digital Manufacturing, Additive Manufacturing, DARPA Adaptive Vehicle Make effort; Materials Genome Initiative, etc.

*5th member to join in fall 2014
Questions?