Robotic Manufacturing

Shreyes Melkote
Gary McMurray

GTMI EAB Meeting, April 10th, 2018
Opportunity

- Rapidly growing industry need for flexible automation in manufacturing
 - For repetitive, tedious, and hazardous tasks still prevalent in manufacturing (e.g. assembly, warehousing, food production) – an opportunity for innovation
 - To cater to increased product variety, smaller batch production
 - For competitiveness through greater speed, efficiency, and productivity

- To take advantage of recent advances in robotics and intelligent automation
 - Cage-less robots with “human” traits of perception, dexterity
 - Low cost sensors, artificial intelligence

- Need for future workforce educated and trained in robotic technologies relevant to manufacturing
 - Application of robotics in manufacturing is not “plug-and-play” – requires intimate knowledge of manufacturing processes and robotics (e.g. robotic machining)
Proposed Solution

- Establish an interdisciplinary activity in robotic manufacturing that leverages GT’s core strengths in manufacturing and robotics
 - Collaboration between GTMI and the Institute for Robotics and Intelligent Machines (IRIM)
 - Industry partnerships to guide research
Industry and Federal Landscape

- Sharp growth in industrial robot orders in recent years
 - Automotive, Food and beverage, Plastics, Metals, Warehousing/Logistics, Electronics
 - Percentage of manufacturing tasks performed by robots projected to rise from 10% to 25% by 2025 (BCG report, 2015)

- DoD investments
 - ARM Manufacturing USA Institute
 - Interest in robotics for MRO applications

- Multi-agency National Robotics Initiative 2.0
 - Focus on collaborative robotics
Relevant Competencies @ Georgia Tech

GTMI
- Additive Manufacturing (Das, Rosen)
- Composites Manufacturing & Repair (Zhang, Kalaitzidou, Colton, ...)
- Precision Machining (Kurfess, Liang, Melkote, Saldana)
- Inspection & NDE (Ruzzene, Ume, ...)
- Logistics (White, ...)

IRIM
- Human-robot collaboration (Chernova, Balakirsky, ...)
- Sensing & Perception (Lee, Batra, Kira ...)
- Autonomy (Arkin, Boots, Egerstedt, ...)
- Food Processing/Agriculture robotics (McMurray, Hu, Dellaert ...)

Synergistic Areas of Focus*

- Robotic Assembly
- Flexible Process Automation
 - Additive Manufacturing
 - Machining
 - Joining
 - Maintenance, Repair, Overhaul
- Human-Robot Collaboration in manufacturing environments
- Sensing and Perception
- Autonomous navigation for factories

* Several of these topics are also identified as critical capabilities for manufacturing in the 2016 Roadmap for US Robotics (CCC, 2016)
Ongoing GTMI – IRIM Collaboration

- Accurate Robotic Machining – collaboration with Boeing Manufacturing Development Center @ AMPF (Melkote & Balakirsky, ~$1.1M over 2 years)
- Robotic Precision Grinding of Bearing Components (Timken, $150K + in-kind over 2 years, Melkote)
 - IRIM provided space and $$ to build testbed
- Robotic Grinding and Inspection of Forged Aerospace Parts (Arconic, 2+ year project in development, Melkote)
- Human-Robot Collaboration (Hitachi, $100K, Chernova)
Examples of Potential Future Projects

- Human-robot collaboration during assembly – a labor intensive and slow process.
- Develop sensing and control techniques to enhance the accuracy of industrial robots for high precision additive/subtractive manufacturing.
- Mobile robots (e.g. drones) for inspection/NDE during manufacturing and assembly, especially for large/hard to access part surfaces.
- Use of machine learning / AI to adapt to a changing manufacturing work environment.
- Improve software tools to simplify redeployment of robot to new tasks and products.
Target Industries

- Discrete Parts Manufacturing
 - Aerospace, Automotive, Electronics
- Food, Agriculture
- Supply Chain and Distribution Centers
- Small and Medium-sized Enterprises (SMEs)
Possible Next Steps

- Internal workshop to bring together GTMI and IRIM affiliated faculty to brainstorm and identify
 - unique strengths that complement other national efforts
 - synergistic topics for collaboration
 - technical gaps
 - strategies to grow collaboration in robotic manufacturing

- Approach NSF Manufacturing Machines & Equipment Program for possible funding for a national workshop

- Meet with industry and other USG institutions to discuss workforce development for adv. manufacturing and robotics